Mighty Morphing Power Turbines

If Virginia ever develops a large fleet of offshore wind turbines, we may have a team of researchers led by the University of Virginia to thank.

Funded by the Advanced Research Projects Agency-Energy, the research team expects to build prototypes this summer for a 50-megawatt offshore wind turbine that is nearly six times more powerful than the record-setting turbine deployed off the coast of Scotland in April, reports Greentech Media.

The massive turbine takes a radically different approach to wind turbine design. Conventional turbine blades face the incoming wind. By contrast, blades for the Segmented Ultralight Morphing Rotor (SUMR) would face downwind and fold together as the wind force increases. The design was inspired by palm trees, which have evolved to survive hurricane-force winds. And surviving hurricane-force winds is exactly what the SUMR is supposed to do.

One of the major barriers to developing a wind farm off the south Atlantic coast is the uncertainty of whether conventional turbines, which can withstand North Sea gales, would hold up to extreme hurricane winds. Before Dominion Energy Virginia is willing to build scores of turbines off the coast of Virginia Beach, it wants to erect two turbines in the so-called Virginia Offshore Wind Technology Advancement Project (VOWTAP) to test a hurricane-resistant design. But the utility was unable to get the project cost, last estimated at $300 million, low enough to win approval by the State Corporation Commission. The project has been effectively shelved.

The ultralight SUMR blades will be 200 meters long, almost twice as long as conventional blades, but will be possible to assemble in pieces, thus avoiding problems shipping them from the factory site to the project site. Because the blades would be constructed of more malleable materials, they also would be capable of morphing downwind.

“We’re trying to have the turbine blades be more aligned along the load path, so we can get away with lower structural mass and have less fatigue and less damage,” said Eric Loth, chair of the department of mechanical and aerospace engineering at UVa and project leader.

The UVa-led consortium plans to test its turbine this summer at the National Wind Technology Center in Colorado and complete the design within a year.

Loth, the design leader, hopes that the new turbine will be transformative. The innovative design could reduce the levelized cost of offshore wind energy by as much as 50% by 2025, he says. “We need to come up with turbines that are not necessarily more efficient but will cost less to build and maintain.”

Bacon’s bottom line: If this research pans out, Virginians should thank their lucky stars that Dominion didn’t commit to spending billions of dollars on what in retrospect can be viewed as risky and outmoded wind technologies. Hopefully, this project will spark renewed interest in offshore wind. It would be doubly cool if Virginia could not only participate in the creation of the SUMR blades but be the first to deploy it on a commercial scale and the first to reap its benefits.

As we think about Virginia’s long-term energy mix (see previous post), we should factor the potential of this new wind technology into the equation.

Correction: Al Christopher, director of the state Department of Mines, Minerals and Energy, informs me that the VOWTAP project has not been shelved. Rather it morphed last July into Virginia Coastal Offshore Wind. “Dominion has said publicly several times recently that it plans to file for cost recovery with the SCC very soon.”